skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Montési, Laurent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Stress‐driven melt segregation may have important geochemical and geophysical effects but remains a poorly understood process. Few constraints exist on the permeability and distribution of melt in deformed partially molten rocks. Here, we characterize the 3D melt network and resulting permeability of an experimentally deformed partially molten rock containing several melt‐rich bands based on an X‐ray microtomography data set. Melt fractions range from 0.08 to 0.28 in the ∼20‐μm‐thick melt‐rich bands, and from 0.02 to 0.07 in the intervening ∼30‐μm‐thick regions. We simulated melt flow through subvolumes extracted from the reconstructed rock at five length scales ranging from the grain scale (3 μm) to the minimum length required to fully encompass two melt‐rich bands (64 μm). At grain scale, few subvolumes contain interconnected melt, and permeability is isotropic. As the length scale increases, more subvolumes contain melt that is interconnected parallel to the melt bands, but connectivity diminishes in the direction perpendicular to them. Even if melt is connected in all directions, permeability is lower perpendicular to the bands, in agreement with the elongation of melt pockets. Permeability parallel to the bands is proportional to melt fraction to the power of an exponent that increases from ∼2 to 5 with increasing length scale. The permeability in directions parallel to the bands is comparable to that for an isotropic partially molten rock. However, no flow is possible perpendicular to the bands over distances similar to the band spacing. Melt connectivity limits sample scale melt flow to the plane of the melt‐rich bands. 
    more » « less
  2. The dataset includes the measurements of individual subduction zones defined in the convergence-parallel, trench-perpendicular, and spreading-parallel direction. </p>  </p> Table S3. Location of each trench, arc, and back-arc defined in a direction parallel to the convergence, and the corresponding distance from the trench to the arc (D_TA), subarc slab depth (H), and from the trench to the back-arc spreading center (D_TB). The slab dip is measured at 50km (Dip50), 100km (Dip100), and 200km (Dip200) and averaged from 0 to 50 km (Dip050), 0 to 100km (Dip0100), 0 to 200km (Dip0200), and 50 to 200km (Dip50200). </p> Table S4. Location of each trench, arc, and back-arc defined in a direction perpendicular to the trench, and the corresponding distance from the trench to the arc (D_TA), subarc slab depth (H), and from the trench to the back-arc spreading center (D_TB). The slab dip is measured at 50km (Dip50), 100km (Dip100), and 200km (Dip200) and averaged from 0 to 50 km (Dip050), 0 to 100km (Dip0100), 0 to 200km (Dip0200), and 50 to 200km (Dip50200). </p> Table S5. Location of each trench, arc, and back-arc defined in a direction parallel to the spreading direction, and the corresponding distance from the trench to the arc (D_TA), subarc slab depth (H), and from the trench to the back-arc spreading center (D_TB). The slab dip is measured at 50km (Dip50), 100km (Dip100), and 200km (Dip200) and averaged from 0 to 50 km (Dip050), 0 to 100km (Dip0100), 0 to 200km (Dip0200), and 50 to 200km (Dip50200). </p>  </p> 
    more » « less
  3. Abstract A global study of subduction zone dynamics indicates that the thermal structure of the overriding plate may control arc location. A fast convergence rate and a steep slab dip bring a hotter mantle further into the wedge corner, forming arc volcanoes closer to the trench. Separately, laboratory and numerical experiments showed that the development of a back‐arc spreading center (BASC) is driven by the migration of the subducting hinge, especially following changes in the slab geometry. As both arc location and the deformation regime of the overriding plate depend on slab kinematics and geometry, we investigate the possible correlations between BASC, the position of volcanic arcs, and slab dip at the scale of individual subduction zones. To do this, we compare the distance from trench to arc and trench to BASC at the Mariana, Scotia, Vanuatu, Tonga, and Kermadec subduction zones. In most cases, the arc and BASC are closer to the trench when the slab is dipping steeply. The correlation could result from an interplay between progressive changes in slab geometry and overriding plate deformation. This assumes, on the one hand, that the isotherm at the apex of which the arc forms is tied to a constant slab decoupling depth and, on the other hand, that back‐arc opening accommodates a change in slab dip. As slab dip decreases, both the BASC and the apex of the isotherm controlling the melt focusing move further from the trench. The observed trends are consistent with a slab anchored at 660 km depth. 
    more » « less